奇点文学社

手机浏览器扫描二维码访问

对某些高深莫测的怀疑(第1页)

我现在怀疑一件事情,就是很多时候人们总会有夸大其词的这样一种情况,比如像数学,如果你不懂的话,很多人对微积分嘛,就会觉得特别的高深莫测,觉得好像那是好像只有外星人才懂的东西,其实如果你只要认真的看一下的话,就会发现它并没有多复杂,无非就是,我举个例子啊,怎么求一个椭圆的面积?我们知道长方形的面积,用长乘以宽就可以了,三角形的面积,用长乘以宽除以二就是它的面积好的,梯形就是上底加下底,用它们的和乘以高除以二就可以,但是椭圆怎么求呢?我们如何得到它的这个公式呢?我们可以发现椭圆它的,构成椭圆的那条曲线,它的变化是连续的,由此呢,我们可以得出一个结论,就是说它的这种变化嘛,它肯定是有规律的,有某一种它的一种变化的量在这里面,那么,所谓的微积分,就是把这个椭圆嘛,把它将它划分为无数个长方形,这不难吧,这很容易理解,然后分别求这些长方形的面积,这就叫做微分,接着呢,把这些长方形的面积全部加起来,这就是这个椭圆的面积,这就叫做积分,这就是微积分的一个基本的思想,就是这样的,就这么简单,问题就在于我们怎么样来求那一个,长方形的面积呢?我们将它划分为无数的那个长方形,那个长方形到底是多大的呢?这里就涉及到很多的具体的问题,这些问题不是牛顿解决的,也不是莱布尼兹解决的,他们只是发明了,微积分的一种基本的方法,他们没有解决,这个问题,这个问题涉及到无限的问题,什么叫做极限?就是说我们把一个椭圆把它划分为无数个这样的长方形,那么这个长方形到底是多小呢?这里就涉及到一个极限的问题,无限小那么无限到底是什么呢?这个问题一直等到后来的康托尔才解决,但是我们现在不需要解决这样一个问题,我们只需要求到它的那种变化率,就是椭圆的那条曲线,它的变化它有一个变化率,这个变化率就叫做导数,在我们做微积分的时候,经常会要一个求导的问题,所谓的导数其实很简单嘛,就是,我们看到一个椭圆,它的那条曲线在不断的变化,那个变化的是连续的,那么它和那个变化的量就是一个固定的值,这个固定的值就叫做导数,求这个变化率的过程就叫做求导,所以呢,所谓的这些高深莫测的东西并没有那么的神秘,也没有那么的高深莫测,只不过有些人嘛,故作高深而已

比如所谓的黎曼几何?在很多人听来,那简直就是外星人才学得会的东西,其实很简单,就是嘛,我们知道,按照我们普通的几何学,它是在一个平面上的,所以呢,我们得到了一个结论,就是三在平面上的,也就是欧几里的几何,它的三角形的内角和是180度,但是,黎曼几何呢?它不是在一个平面上的,它是在一个曲面上的,也就是说它在一个球上的,很显然的,如果我们在一个球上画出一个三角形,这个三角形的话,就不是我们传统意义上的三角形,也就是说不是我们所讲的那种欧几里德式的几何?所以它就会小于180度,这并不难理解,所以嘛,所谓的o是黎曼几何也没有多么的呃深莫测,然后就是研究这种嘛,在一个非平面几何上非平面上的几何嘛,也就是研究在一个球面上的几何,到底是什么样的,有什么特征,无非就是研究这样的东西啊,我就不相信这样的东西有多么的难以理解,只不过有些人嘛,好像为了表现自己的一种特别的优越感吧,把这些东西说的多么的好像就像一种难以理解的东西一样,其实并不复杂

再比如哲学,在没有学习之哲学之前,很多人提到康德,他的先验哲学那不得了啊,那是这个世界上最为复杂,最为难懂的东西啊,我原来也觉得哇,这东西不得了,那是只有智商高达1000的人才能理解吧,后来读了以后也觉得其实没有那么复杂嘛,甚至可以说蛮简单的,无非就是说嘛,我们所看到的这个世界,我们所看到的这些经验,这些直觉的这些感官所得到的这些东西,要经过我们头脑的某种的一种组合,虽然这样说并不完全是康德的意思,因为在康德看来,我们的头脑中有一种先天的一种形式,这并不是一种多么难以理解的东西啊,其实我觉得其实很简单,你只要从这样的角度去思考康德,那么康德的哲学相当的容易理解,而且你可以自己推出整个康德的哲学体系,就这么简单,但是一两百年以来,所有的人都把康德的哲学看的多么的好像就是难以理解,我只能说这些人就是故作高深,故意给其他的人造成一种,隔离带吧,也就是说以显示自己的一种优越感,好像他懂哲学,你们不懂他就了不起,我读了以后就等于没什么了不起的,哪怕是后来的维特根斯坦或者是海德格,你读了以后我也觉得没有多大了不起,也许是因为自己并没有完全读懂吧,反正我觉得是蛮简单的,多读了一点书的好处,就是对很多所谓的东西都会去魅也就是说呢,觉得没有那么大的魅力了,以后你就会觉得原来也不过如此嘛,所以嘛,很多时候人还是要有一点头脑,多读一点书,就不会被人所愚弄欺骗,比如像数学,我原来觉得什么那个黎曼几何啊,什么拓扑学啊,还有什么什么什么那个群论呐哇,那都是好像,反正我觉得我自己应该是看不懂吧,反正后来就硬着头皮看了一点,原来也没什么了不起的,比如那个群论嘛,就是把一些集合嘛,他们之间研究集合之间的关系就是这样的,这个集合和集合之间有些什么样的特性,有些什么特殊的集合,这又有什么了不起的呢?无非就是把研究的对象改变了一下,我们原来是研究的是数字,后来研究的是那种未知数就是代数嘛,比如xyz之类的,这就是代数嘛,把从数字变到这些未知数xyz这样,然后就是函数在这呢,就带到进入这个有关集合的领域,这有什么了不起的,难道我不可以去研究一下这些集合之间它们特殊的关系吗?这就是群论嘛,这就是伽罗华的一种思想

所以嘛,我看到很多人在网上夸夸其谈,然后说的天花乱坠,说的那些好像特别的高深莫测,难以理解一样,我原来也觉得自己这些东西不是自己所能理解的,特别原来比如一些什么北大清华的学生啊,觉得哎呀,那不得了,那不是自己,那是高不可攀的东西,后来嘛,见得多了,觉得不过如此,特别是看到了很多,比如哈佛麻省理工普林斯顿或者是宾夕法尼亚,还有哥伦比亚斯坦福的那些学生,以后牛津剑桥不过如此嘛,也不是两个眼睛,一个鼻子,两个耳朵吗?看他们答题的话,也不过如此嘛,所以嘛,人还是要多有一点自信,而且呢,去了解一下,了解了看了以后你就会没有了那种,对他们的神话的感觉,知道吧,不要神话他们,比如有的人说现在有一些人,外国人呐,吃饱了饭撑的,这有什么可伟大的呢?什么样的人才会这样说话呢?

请评论一下这篇文章

求道,  被抄家,她曝女儿身拉出崽喊父皇  灵界天尊之林风  民间怪谈集  四合院:重生52,我有逆天悟性  暗处的偷偷喜欢  南北赤血录  六翼精灵  重生七五,改变悲惨人生  种田:女穿男成扶弟魔中那个弟  江山泪:美人劫  重生之我有神级侦察术  甄嬛传重生之陵容  手握万界红包群,舔狗女配鲨疯了  时光流派  重生六十年代:空间在手一切我有  马甲女王她大杀四方  自嗨式少年成长记录  魔法世界种田记  我的女友来自未来!  

热门小说推荐
重生之崛起1988

重生之崛起1988

重生之崛起1988简介emspemsp关于重生之崛起1988金融天才陈清水,一觉醒来,发现重生八十年代!占据了一个酗酒的赌鬼身体,还多了一个经常被家暴,但是貌美如花的老婆,还有个粉雕玉琢的女儿!这个年代,bp机纵横天下,大哥大彰显身份!国内的互联网还没有开端,一切都还在最开始!陈清水布局整个互联网江山!成为国内互联网教父级人物陈布斯!进军手机产业,做全国产的芯片!顺带走上世界之巅!...

别闹了,薄先生

别闹了,薄先生

别闹了,薄先生简介emspemsp关于别闹了,薄先生别闹了,薄先生离婚一年多,她千方百计把渣前夫拐上了床。却没想到,他一直在守株待兔。从前,他对她弃如敝履,如今,却对她亲不够抱不够,还要求她生宝宝叶蔓觉得他真好笑,别闹了,薄先生,我爱你时,你说什么就是什么,我不爱你了,你说你算个什么?...

种田刷钱

种田刷钱

种田刷钱,悠闲一生。简介无力,请看正文。如果您喜欢种田刷钱,别忘记分享给朋友...

如果你也呼唤我的名字

如果你也呼唤我的名字

来阅文旗下网站阅读我的更多作品吧!如果您喜欢如果你也呼唤我的名字,别忘记分享给朋友...

真千金吃瓜成团宠,全家逆天改命

真千金吃瓜成团宠,全家逆天改命

玄学大师林诺诺穿成豪门真千金,大哥是高冷总裁大佬,二哥是娱乐圈顶流,三哥是叱咤风云的校霸几个哥哥都是宠妹狂魔,可惜宠的是女主假千金,而原主因为和女主争宠,在两年后惨死!林诺诺本想远离修罗场躺平吃瓜,谁知心声意外暴露,全家火葬场!林三少默默退了机票,去调查女友背景。林大少??马上放下手头工作,给自己安排全...

世子爷心怀不轨

世子爷心怀不轨

沈天离直到死的那一刻才知晓威风凛凛的康平侯原来是女儿身。这一世沈天离一心一意只想跟在康平侯身边,心里眼里都只装得下他,其他的都是浮云。蒋青皱着眉头小大人似的娘亲,那个哥哥为何总是要捏我的脸?母亲大人那个哥哥喜欢你,才捏你啊。蒋青嘟着嘴可是,我一点儿也不喜欢他呀。蒋青长大后,认为沈天离就是一个病原体,得远远避开。沈天离整日冥思苦想,怎么也想不明白,上一世,蒋青对他可是一见钟情,再见倾心。这一世,咋就看不上眼了如果您喜欢世子爷心怀不轨,别忘记分享给朋友...

每日热搜小说推荐